Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation.

نویسندگان

  • Junji Iwahara
  • Young-Sang Jung
  • G Marius Clore
چکیده

In this paper, we present a series of heteronuclear NMR experiments for the direct observation and characterization of lysine NH3 groups in proteins. In the context of the HoxD9 homeodomain bound specifically to DNA we were able to directly observe three cross-peaks, arising from lysine NH3 groups, with 15N chemical shifts around approximately 33 ppm at pH 5.8 and 35 degrees C. Measurement of water-exchange rates and various types of 15N transverse relaxation rates for these NH3 groups, reveals that rapid water exchange dominates the 15N relaxation for antiphase coherence with respect to 1H through scalar relaxation of the second kind. As a consequence of this phenomenon, 15N line shapes of NH3 signals in a conventional 1H-15N heteronuclear single quantum coherence (HSQC) correlation experiment are much broader than those of backbone amide groups. A 2D 1H-15N correlation experiment that exclusively observes in-phase 15N transverse coherence (termed HISQC for heteronuclear in-phase single quantum coherence spectroscopy) is independent of scalar relaxation in the t(1) (15N) time domain and as a result exhibits strikingly sharper 15N line shapes and higher intensities for NH3 cross-peaks than either HSQC or heteronuclear multiple quantum coherence (HMQC) correlation experiments. Coherence transfer through the relatively small J-coupling between 15Nzeta and 13Cepsilon (4.7-5.0 Hz) can be achieved with high efficiency by maintaining in-phase 15N coherence owing to its slow relaxation. With the use of a suite of triple resonance experiments based on the same design principles as the HISQC, all the NH3 cross-peaks observed in the HISQC spectrum could be assigned to lysines that directly interact with DNA phosphate groups. Selective observation of functional NH3 groups is feasible because of hydrogen bonding or salt bridges that protect them from rapid water exchange. Finally, we consider the potential use of lysine NH3 groups as an alternative probe for larger systems as illustrated by data obtained on the 128-kDa enzyme I dimer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Unique and Simple Approach to Improve Sensitivity in 15N-NMR Relaxation Measurements for NH3+ Groups: Application to a Protein-DNA Complex

NMR spectroscopy is a powerful tool for research on protein dynamics. In the past decade, there has been significant progress in the development of NMR methods for studying charged side chains. In particular, NMR methods for lysine side-chain NH₃⁺ groups have been proven to be powerful for investigating the dynamics of hydrogen bonds or ion pairs that play important roles in biological processe...

متن کامل

Measurement of slow (micros-ms) time scale dynamics in protein side chains by (15)N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme.

A new NMR experiment is presented for the measurement of micros-ms time scale dynamics of Asn and Gln side chains in proteins. Exchange contributions to the (15)N line widths of side chain residues are determined via a relaxation dispersion experiment in which the effective nitrogen transverse relaxation rate is measured as a function of the number of refocusing pulses in constant-time, variabl...

متن کامل

Fast hydrogen exchange affects ¹⁵N relaxation measurements in intrinsically disordered proteins.

Unprotected amide protons can undergo fast hydrogen exchange (HX) with protons from the solvent. Generally, NMR experiments using the out-and-back coherence transfer with amide proton detection are affected by fast HX and result in reduced signal intensity. When one of these experiments, (1)H-(15)N HSQC, is used to measure the (15)N transverse relaxation rate (R2), the measured R2 rate is convo...

متن کامل

Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr

To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ (1)H Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abun...

متن کامل

Current Topics Solution NMR of Large Molecules and Assemblies†

Solution NMR spectroscopy represents a powerful tool for examining the structure and function of biological macromolecules. The advent of multidimensional (2D-4D) NMR, together with the widespread use of uniform isotopic labeling of proteins and RNA with the NMR-active isotopes, 15N and 13C, opened the door to detailed analyses of macromolecular structure, dynamics, and interactions of smaller ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 129 10  شماره 

صفحات  -

تاریخ انتشار 2007